
By Maddi Busby, Texas A&M University January 2, 2025
Collected at: https://scitechdaily.com/the-chilling-discovery-that-could-point-to-life-beyond-earth/
New research sheds light on icy ocean worlds like Jupiter’s Europa, focusing on a novel thermodynamic concept called the “cenotectic.”
This concept helps determine the conditions under which liquid water can remain stable in extreme environments, offering insights into their habitability and enhancing the data from space missions like NASA’s Europa Clipper. The research is a collaborative effort that bridges cryobiology and planetary science, aiming to decode the mysteries of potentially life-supporting ocean worlds across our solar system.
Groundbreaking Research for Icy Worlds
As NASA’s Europa Clipper begins its historic mission to Jupiter’s icy moon Europa, Dr. Matt Powell-Palm, a professor in Texas A&M University’s J. Mike Walker ‘66 Department of Mechanical Engineering, has revealed groundbreaking research that could reshape our understanding of icy ocean worlds across the solar system.
Published in Nature Communications and co-authored with planetary scientist Dr. Baptiste Journaux from the University of Washington, the study introduces a new thermodynamic concept called the “cenotectic.” This concept explores the stability of liquids under extreme conditions, providing essential insights into the potential habitability of icy moons like Europa.
Revolutionizing the Search for Habitability
The exploration of icy ocean worlds represents a new frontier in planetary science, focusing on understanding the potential for these environments to support life. Powell-Palm’s research addresses a fundamental question in this field: under what conditions can liquid water remain stable on these distant, frozen bodies? By defining and measuring the cenotectic, the absolute lowest temperature at which a liquid remains stable under varying pressures and concentrations, the team provides a critical framework for interpreting data from planetary exploration efforts.
This study combines Powell-Palm’s expertise in cryobiology – specifically the low-temperature thermodynamics of water – initially focused on medical applications like organ preservation for transplantation, with Journaux’s expertise in planetary science and high-pressure water-ice systems. Together, they developed a framework that bridges disciplines to tackle one of the most fascinating challenges in planetary science.
“With the launch of NASA Europa Clipper, the largest planetary exploration mission ever launched, we are entering a multi-decade era of exploration of cold and icy ocean worlds. Measurements from this and other missions will tell us how deep the ocean is and its composition,” said Journaux. “Laboratory measurements of liquid stability, and notably the lowest temperature possible (the newly-defined cenotectic), combined with mission results, will allow us to fully constrain how habitable the cold and deep oceans of our solar system are, and also what their final fate will be when the moons or planets have cooled down entirely.”
A Texas A&M Legacy of Innovation in Space Science
The research was conducted at Texas A&M and led by mechanical engineering graduate student Arian Zarriz. The work reflects Texas A&M’s deep expertise in water-ice systems and tradition of excellence in space research, which spans multiple disciplines. With the recent groundbreaking of the Texas A&M Space Institute, the university is poised to play an even larger role in space exploration, providing intellectual leadership for missions pushing the boundaries of human knowledge.
“The study of icy worlds is a particular priority for both NASA and the European Space Agency, as evidenced by the flurry of recent and upcoming spacecraft launches,” said Powell-Palm. “We hope that Texas A&M will help to provide intellectual leadership in this space.”
The Future of Space Exploration and Research
As planetary exploration missions, such as those targeting icy moons, continue to expand our understanding of the solar system, researchers at Texas A&M and beyond prepare to analyze the wealth of data they will provide. By combining experimental studies like those conducted by Powell-Palm and Journaux with the findings from these missions, scientists aim to unlock the secrets of cold, ocean-bearing worlds and evaluate their potential to harbor life.
Reference: “On the equilibrium limit of liquid stability in pressurized aqueous systems” by Arian Zarriz, Baptiste Journaux and Matthew J. Powell-Palm, 18 December 2024, Nature Communications.
DOI: 10.1038/s41467-024-54625-z
Funding: U.S. National Science Foundation, NASA Astrobiology Institute, NASA Precursor Science Investigations for Europa, NSF Engineering Research Center for Advanced Technologies for Preservation of Biological Systems

Leave a Reply